Adjoint-based phase reduction analysis of incompressible periodic flows

نویسندگان

چکیده

Phase reduction is a reduced-order modeling technique that can express the high-dimensional periodic dynamics with single scalar phase variable. We develop an adjoint-based framework for incompressible flows. This analysis reveals high-fidelity spatial sensitivity fields respect to perturbation over limit cycle of flow in computationally efficient manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Homogenization of the Inviscid G-equation for Incompressible Flows

G-equations are popular front propagation models in combustion literature and describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We prove homogenization of the inviscid G-equation for space periodic incompressible flows. This extends a two space di...

متن کامل

Periodic Homogenization of Inviscid G-equation for Incompressible Flows

G-equations are popular front propagation models in combustion literature and describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We prove homogenization of inviscid G-equation for space periodic incompressible flows. This extends a two space dimens...

متن کامل

Phase-response analysis of synchronization for periodic flows

We apply the phase-reduction analysis to examine synchronization properties of periodic fluid flows. The dynamics of unsteady flows are described in terms of the phase dynamics reducing the high-dimensional fluid flow to its single scalar phase variable. We characterize the phase response to impulse perturbations, which can in turn quantify the influence of periodic perturbations on the unstead...

متن کامل

Maximal Effective Diffusivity for Time-Periodic Incompressible Fluid Flows

In this paper we establish conditions for the maximal, Pe, behavior of the effective diffusivity in time-periodic incompressible velocity fields for both the Pe oc and Pe 0 limits. Using ergodic theory, these conditions can be interpreted in terms of the Lagrangian time averages of the velocity. We reinterpret the maximal effective diffusivity conditions in terms of a Poincar6 map of the veloci...

متن کامل

Incompressible Flows Based Upon Stabilized Methods

SUMMARY We give a brief overview of our eeorts in developing stabilized nite element methods for incompressible ows. In particular, we review some suggestions for stability parameters and comment once more on the curious relationships between some stable Galerkin and stabilized nite element methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review fluids

سال: 2022

ISSN: ['2469-9918', '2469-990X']

DOI: https://doi.org/10.1103/physrevfluids.7.104401